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Summary 

The system under connideration is a multi­
processor, multi-storage module configuration 
adapted to the processing and fault security 
requirements of such real-time applications as 
telephone switching, message switching, and radar 
systems control. Each processor accesses store 
independently and asynchronously and each region 
of store to which it has immediate access is 
bounded by an addressing structure known as a 
Capability. The capability has a dual purpose. 
It acts as a protection mechanism against hardware 
and software failure; and it defines a logical 
unit of contiguous storage space (a "segment") out 
of which all operating system and application data 
structures are built. A segment may contain 
either data or capabilities permitting a list 
structure of interconnected segments to be 
established. 

Each processor executes instructions contained 
in data segments, achieving linkage from segment 
to segment, and in so doing manipulates the data 
structure appropriately. One particularly 
significant feature of the system is that it is 
possible for a runninr program to make copies of 
capabilities which it can store arbitrarily into 
the data structure. The operating system reduces 
essentially to a series of 'protected subroutines', 
each subr_outine possessing just the capabilities 
required to gain appropriate access to the data 
structure. There exists therefore a graded 
approach to storage protection and a complete 
lack of the vis~al division into 'special' and 
'normal' modes of machine hardware operation. 

Introduction 

Computer systems are characterised by their 
ability to provide 'general purpose' solutions to 
specific logical problems. In the telecomm­
unications field, in particular, the computer may 
be used as a centralised control mechanism which 
replaces the logical functions often formerly 
provided by distributed hardware devices. Thus, 
for example, the centralised computer system can 
be used to control telephone switching hardware 
which itself contains little or no sequential 
logic either from a mechanical or electronic 
point of view, Similarly a computer may be used 
to provide automatic routing of messages in a 
message switching network; automatic information 
retrieval, computation, and display in an air 
traffic control environment; centralised control 
of industrial processes; network control of 
distributed systems such as electricity and gas 

grids; area control of road traffic schemes; etc. 

Three important facto=s relevant to these 
systems are security, growth and obsolescence. 
Real-time systems whose operation affects a lE.rge 
number of human beings must be capable of with­
standing long periods between system failures. 
In some cases this requirement arises from an 
economic or strategic need (in telephone switching 
systems, for example) and in others (such as air 
traffic control) human lives are directly involved. 
The second factor arises because telec011DDunications 
networks have traditionally been designed so that 
increases in size and 'traffic' carrying capacity 
can be accommodated over a period of years. 
Thirdly the nature of telecommunications networks 
and, in particular, the amount of capital invest­
ment required implies that systems installed today 
should not become rapidly obsolescent. 

Traditionally, the kind of computers that have 
been applied to these real-time control tasks have 
emerged from two quite different stables; on the 
one hand, system designers have made attempts t_o 
adapt computing equipment developed in the data 
processing environment to the requirements of real 
time control, and on the other hand engineers who 
have experience of existing electromechanical and 
electronic techniques have tried their hand at 
producing computer systems. This dichotomy of 
discipline has led in the past to a polarisation 
of ideas on how real-time centralised control 
systems .;hould be built. As a broad generalis­
ation it might be said that the computer 
engineers have failed to design systems which have 
the security and expandability features so 
characteristic of telecommunications systems, 
whilst the telecommunications engineers have 
failed to design systems which promote to the full 
the control flexibility afforded by software 
technology. 

In order to illustrate the problems confronting 
the computer system designer in this field it is 
useful to select a particular case for analysis. 
The case chosen here is that of the telephone 
switching control problem because it represents a 
particularly comprehensive example of conflicting 
requirements. Designers who are interested in 
other real time application areas will, however, 
recognise many analogies with their own problems. 

In the case of telephone switching control, it 
was thought for a long period of time that the 
major problem involved was the tricky technological 
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one of designing a centralised control device to 
obey· the necessary logical steps to control the 
switches involved in setting up a circuit from 
one telephone subscriber to another. . This was 
obviously the immediate and central task and it 
was tackled in a variety of different ways. Some 
solutions involved hardware-wired logic as the 
means of centralised control, others involved 
the use of a computer-like device which fetched 
instructions from a read-only store, and yet others 
utilised a true computer configuration in which 
a processing unit fetched instructions from and 
modified data in, a read/write store, At the 
beginning, it did not really seem to matter very 
much which particular system was chosen because 
the central problem of switch control was iden~ical 
in all cases, and often the decision as to which 
system to adopt depended on the design experience 
and background of the individuals concerned. 

On the basis of a computer's ability to set 
switches in a telephone network, it was also 
arguable that there were no obvious advantages 
in any of these approaches over the previous 
electromechanical systems. Certain peripheral 
advantages were said to accrue such as 'system 
flexibility', but what exactly did this mean, and 
how was such a nebulous term to be quantified? 
Nowadays, it is possible to enumerate a number of 
facilities provided by a computer controlled 
telephone switching system. For example, 

automatic fault diagnosis 
centralised maintenance 
network monitoring 
automatic accounting 
integrated manual assistance facilities 
special subscriber facilities 

All these factors were, of course, recognised 
by the advocates of centralised control, but they 
were regarded as a bonus to the more immediate 
problem of the switching task itself. A closer 
examination of these and other similar facilities 
leads, however to a new concept: a centralised 
computer system for telephone switching control 
must be regarded as an administrative unit which 
interfaces p::imarily with the staff of the tele­
phone administration. Except for the provision 
of special facilities, the interface to the tele­
phone subscribers is of secondary significance 
since it necessarily remains very much the same as 
in all previous systems. 

In a computer controlled telephone network all 
the above facilities can be provided in a central­
ised manner. Fault diagnosis and maintenance can 
be handled by a relatively small staff via inter­
active video-displays; network monitoring programs 
can be similarly controlled by a few staff at a 
centralised location. Automatic accounting soft­
ware can remove the human data preparation link, 
passing metering information from individual calls 
into a form suitable for the direct printing of 
accounts, Manual board operators can communicate 
via similar video displays on which all inform­
ation pertinent to the call is recorded. The 
operator has sufficient control to achieve the 

required objective without the necessity of any 
administrative overheads, such as the filling out 
of dockets: instead, the system records the call 
details and cost automatically and routes it 
directly through to the r,ccounting software system, 
This approach implies a ur,ification of system 
design and, where necessary, the derivation of 
simple and standard ergonomic interfaces with 
those staff who control it, .The activities 
mentioned above are suDlllarised in Figure 1. 
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Once the centralised control system is regarded 
as an aid to administration of the network, and 
once it is understood that it is here that the 
real.economic advantages lie, the requirements of 
the centralised computing system necessary to 
support su~h activities become very different from 
those needed to handle the switching problem it­
self. In particular it is clear that wired logic 
or read-only program storage systems will not 
provide the necessary flexibility; and it is clear 
also that comprehensive software facilities are 
required to sensibly tackle the application 
requirements of what has become a real-time system 
with multi-access control. 

The General Purpose Computer 

It is clear from the foregoing telephone 
switching example that the problems of large and 
comprehensive central control systems are not 
amenable to solution either by dedicated tele­
communications processors or by existing computers 
designed for the data processing environment. 



Here is a list of some of the more obvious and 
important requirements: 

ABILITY TO RUN REAL-TIME PROGRAMS 
MULTI-PROGRAMMING FACILITIES 
MULTI-ACCESS FACILITIES F'OR MAN/MACHINE 

CONTROL 
STRICT INFORMATION PROTECTION BETWEEN 

PROCESSES 
THE CONVERSE ABILITY TO SHARE INFORMATION 

BETWEEN PROCESSES WHERE REQUIRED 
HARDWARE EXPANDABILITY IN INDEPENDENT 

INCREMENTS OF STORAGE AND PROCESSING POWER 
AUTOMATIC RECONFIGURATION FOLLOWING SYSTEM 

FAILURE 
FLEXIBLE INTERFACING TO DISTRIBUTED 

EQUIPMENT AND TO MAN/MACHINE DEVICES 

In the light of these requirements, and the 
fact that existing data processing systems do not 
match up to all of them, we prefer to reserve 
the term'general purpose computer'for a system 
which meets all these characteristics. Given 
this definition, it becomes clear that neither 
existing data processing systems nor telecommuni­
cations processors can in any sense be regarded as 
'general purpose'. 

Design Considerations 

In order to achi-ve the above design objectives 
a combination of hardware and software technologicai 
innovations must be employed. One particularly 
important feature involves system expansion. 

The computer configuration must be capable of 
expanding· in two important aspects: there should 
be no practicable limits on the size of the fast 
store; and th~re should be as wide a range as 
possible of processing power. In each of these 
cases, the hardware should be expandable in 
reasonably small increments so as to permit a 
smooth r·ate of increase in capital investment in 
the system. It is particularly important that 
increases in storage and processing power can be 
achieved independently, since there is no obvious 
correlation between one and the other over a wide 
range of possible systems. Therefore a true 
multi-processor system which can contain a 
variable number of processing units and a variable 
number of storage modules is the ideal for the 
application. 

The system must be resilient against both solid 
and transient hardware failures, and similarly 
against software bugs (which have many of the 
characteristics of trausient hardware failures). 
This requirement means in practice that the system 
should be capable of automatic reconfiguration (i.e. 
switching out the failed hardware module) and 
recovery (i.e. the ability to return to the execut­
ion of a coherent program and data base). 

The generdl purpose computer must also be capable 
of interfacing freely with a wide range of distribut­
ed telecommunications equipment, which may be remote 
from or local to the computer itself, and also must 
interface with man/machine devices such as video-

displays and other computer peripheral devices. 

Design Conflicts 

The above remarks are addressed to some of the 
more obvious and important features of the general 
purpose computer. But some of the design require­
ments conflict and it is necessary to examine 
these conflicts in some detail. 

The first design conflict arises from the 
requirement on the one hand to use the processors 
in a 'work sharing' mode to meet the requirements 
of a multi-programming, multi-processor system and 
on the other to respond quickly to interrupts 
generated by signals from the real-time system 
under control. Each processor must inherently be 
capable of obeying any program steps in the system 
(a functional approach involving the division of 
processors to specific tasks would conflict with 
the multi-processing requirement aiid with the 
need to expand the system with little software 
re-organisation). 

The execution by a processor of a program 
is conventionally termed a process. In a 
multi-processor system there can clearly be as 
many pr~cesses in simultaneous execution as there 
are pro:essors, but there may be an undefined 
number ~f additional processes which are blocked 
awaiting logical events or are freed but have no 
processor on which to run. When a process runs, 
the processor contains in its hardware registers 
information relevant to that process and when the 
process blocks, that information must be stored 
away. In a processor with several registers, the 
storing of their contents may involve many store 
accesses. An interrupt is caused by an event in 
the outside world which raises a signal into the 
computer system. This causes the processor to 
cease its present activity (i.e. to temporarily 
block the running process) and to execute an 
'interrupt process' instead. The changeover 
from one process to the other involves the storing 
and loading of registers and hence there is a 
processing time 'overhead' on each interrupt. 

In a single processor environment, this 
problem is often solved by the use of a second set 
of registers reserved for the interrupt pr,cess. 
In a 'work-sharing' multi-processor system this 
approach is not possible because the interrupted 
process is still logically free to run and may be 
picked up immediately by another processor. 111 
this situation, the information concerning the 
process which is stored away in the first 
processor's register set is completely inaccess­
ible to the second processor. Since the common 
medium of communication between processors is the 
store, it follows that the register information 
of an interrupted pro·cess must be written to store 
where it may be retrieved subsequently by another 
(or the same) processor. This register storing 
overhead is a theoretical limitation on a true 
multi-processor system and as such represents a 
design conflict between the attributes of such a 
system and the requirement to respond quickly to 
interrupts. 



The second design conflict arises because of a 
potential fault security hazard in the universal 
sharing of store by all the processors in a multi­
pr~cessor system. In order to provide a system 
which is expandable in independent increments of 
storage and processing power it is necessary to 
abandon the usual concept of a computer as 
'processing unit plus store'. The corollary 
ot this divorce between processor and dedicated 
store is that a storage module belongs to no 
processor in particular and is equally accessible 
from all processors. Such a system organisation 
achieves the haruware modularity constraint at 
the expense of another; namely, resilience 
against store corruption which could lead to 
undetectable system failure. The concept of a 
multi-store, multi-processor system, which is so 
attractive from the point of view of modularity, 
is wide open to the possibility of storage 
corruption from any processor that fails trans­
iently or permanently. Therefore there is a 
design conflict between 'equal availability of 
all storage locations' and 'potential damage to 
storage contents by a faulty processor'. 

System 250 - A General Purpose 
Computer 

An attempt has been made to embody the general 
design principles described above in the Plessey 
SYSTEM 250 central processing system. This 
system is designed for precisely the range of 
applications described and in particular for 
the control of administration and switching 
functions in a telephone switching environment. 
The design includes the following features which 
are compatible with and a consequence of the 
requirements of a general purpose computer. 

Firstly, the hardware is designed as a multi­
processor, multi-storage module configuration as 
represented in Figure 2. Each processor may 
access any storage location in any store module 
over its own bus. Thus the modularity and 
incremental expansion requirements of the general 
purpose computer are satisfied. 

Secondly, each processor is capable of 
detecting a range of hardware fault indications 
which will cause a fault interrupt to bP- auto:.. 
matically generated. The processor discontinues 
execution of the current process and switches to 
a fault interrupt process instead. The instruct­
ions obeyed by this process are, of course, fetched 
from store in the usual way but, should a subse­
quent fault interrupt be generated in that processor 
during the time that it is executing the fault 
interrupt process, the processor steps to the next 
storage module and recommences the process by 
fetching instructions from it. Thus, a failure 
in the storage module itself or corruption of its 
co~t~nts does not cause a permanent failure of 
the pro~essor which received the original fault 
interrupt. The essential hardware mechanisms 
are therefore provided as a basis for an auto-

. matic reconfiguration software system. 
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Thirdly, a flexible interfacing medium enables 
the system to be adapted to a wide range of 
peripheral equipment. The interconnection 
network is in the form of a bit-serial medium which 
transfers 'messages' between computer system and 
the periphery in both directions. A standard 
serial interface makes it possible to build a 
structure of 'primary' and 'secondary' electronic 
switches to suit a particular configuration and 
to interface simply to man/machine interactive 
devices. This satisfies the requirement that a 
general purpose computer should be connectable 



in a flexible manner to a wide range of telecomm­
unications and other equipment. 

Given the above general featur1is • it is now 
necessary to describe how the system overcomes 
the two basic design conflicts mentioned above. 

Interrupi:s 

The first conflict concerns the incompatibility 
between a true multi-processor system and the 
'overheads' involved in servicing an· interrupt. 

An examination of this problem led inevitably 
to a study of the history of interrupt mechanisms. 
Very early computers which had no interrupt 
systems suffered from the major disadvantage that 
tests of peripheral device status had to be inserted 
into the program at regular intervals. A natural 
consequence of this was the design of interrupt 
hardware which performs this testing between the 
execution of each instruction. When an interrupt 
occurs, the processor ceases to execute its 
current process and switches automatically to the 
execution of an interrupt process. In the case 
of input data. this process typically does nothing 
more than place the information in a software 
organised queue in store. This queue is unloaded 
by a normally scheduled process and the information 
is then analysed and used as appropriate for the 
application. In its role of executing the 
interrupt process, the processor is behaving 
essentially as a hardware queueing mechanism and 
can therefore be replaced by a hardware queue in 
the interface between the serial medium and the 
processing system. In SYSTEM 250 the unit known 
as the Serial/Parallel adaptor (see Figure 2) 
performs this function and. typically, can queue 
up to sixteen messages to and sixteen messages 
from the serial medium. A normally scheduled 
process unloads the messages from the hardware 
queue directly. 

Another input/output requirement involves the 
transfer of data from magnetic backing storage 
devices such as drums and discs. Since it is 
usually uneconomic in conventional systems to 
withstand an interrupt for each word or character 
transferred, the standard approach is to use 
channelling hardware which moves data directly 
between 'burst mode' devices and store. During the 
transfer the processor is free to perform its 
usual functions and only receives an interrupt from 
the channelling hardware when the data transfer is 
complete. The usual characteristic of channelling 
hardware is that it is both elaborate and expensive; 
and it is, perhaps. unfortunate that there appears 
to be a tendency amongst computer designers in the 
direction of more elaboration and more expense. 
Some channellers are completely hard-wired, others 
obey special instructions fetched from store and 
begin to look very much like special purpose 
computers. SYSTEM 250 has taken this trend to its 
logical conclusion and utilises the standard 
processor module as a channeller. This approach 
has two very important advantages. Firstly. in a 
secure system there is no additional 'sparing' 
problem. Whereas it would have been necessary to 

provide a second channeller as a fault security 
backup. the additional processor now required for 
channelling work can share the existing spareproc­
essor(s) required to maintain processing security. 

Thus. in the majority of system configurations. 
the cost comparison is between one processing 
module and two channeling modules. Secondly. 
there is now no requirement for interrupt gener­
ation at the end of a data transfer because the 
processor itself can continue to process what 
would have been the interrupt response routine. 

The two features of SYSTEM 250 described 
above. namely hardware message queueing and the 
use of the processors as channellers. has 
abolished the need for external interrupts and has 
therefore resolved the conflict between interrupts 
and the efficient operation of a true multi­
processor system. Additionally it has provided a 
cheap and conceptually elegant form of input/output 
control. 

It should be observed. in conclusion, that 
there are still three mechanisms in a SYSTEM 250 
processing module which can force a change of 
process: the first is due to a program trap 
condition; the second occurs when the processor's 
interval timer clock value reaches zero; and the 
third is due to the occurrence of an internally. 
detected fault condition. Although these 
co~ditions may colloquially be referred to as 
1 interrup_ts 1 • the common characteristic is that in 
no·case is the condition externally imposed. The 
abolition of inter-processor and device-processor 
interrupt lines has a significant effect on the 
security of the hardware anrl makes it simpler to 
isolate processors and peripheral units following 
hardware failure. 

It can be seen from the above discussion that 
the requirements of the general purpose computer 
are highly interactive. Both security require­
ments and the need for interrupt free operation of 
the multi-processor system affect the input/output 
economics in an unexpected way. By turning these 
conflicting constraints to advantage rather than 
by adopting some conventional compromise solution. 
it has proved possible to realise a simpler and 
more economically attractive solution to the 
problem. 

Storage Protection - The Capability 

The second design conflict which must be 
solved in the quest for the general purpose 
computer concerns the potential for storage 
corruption in a true multi-processor system. Two 
separate fears may be expressed on this subject, 
Firstly, there is the fear that processors which 
have access to the whole of the storage system 
may corrupt the program and read-only data held 
there. This will almost certainly result in a 
catastrophic failure of the system with instructions 
and data constants coverted to random values. 
This problem has led some designers to criticise 
the nature of an alterable store for critical 
real-~ime applications and to suggest that the 
older schemes of wired logic processors or of 



computers with their own dedicated storage modules 
are more adapted to the requirements. 

As wi 11 be shown below, the nature of the 
problem is not so much the volatility of the 
storage medium itself as a lack of discipline on 
the part of the processors in their attempts to 
access it. It is this latter aspect to which 
q~tention has therefore been turned in an attempt 
LO preserve the general purpose features of a 
freely alterable storage system. 

The second fear is that, even in a system where 
read-only and read-write information is strictly 
segregated, there is still the possibility that 
faulty processors will obey random instruction 
sequences, attempt to obey read-only data aG 
instructions, and alter read-write data values 
to which the currently obeyed program has no 
logical access. In short, even in a partitioned 
system of this type there is still much scope for 
corruption of store and therefore of system fail­
ure. 

Solutions to this information protection 
problem typically involve the use of base-limit 
protection registers which partition the store 
into a number of contiguous regions or segments. 
Further protection measures may be applied to 
restrict access, such ~s the 'rings of protection' 
scheme suggested by Graham (reference 1). What 
is required, then, is a mechanism which permits 
the progrannner precisely to define those data 
structures which will be made accessible to a 
running process and, by default, those which will 
not. There must be no system feature which 
prevents information sharing where this is 
logically required, and conversely, no system 
feature which permits information sharing where 
this is not logically necessary. 

The solution which has been chosen in SYSTEM 250 
involves the provision of hardware protection 
features which permit a given running process to 
access only those regions of store that the 
programmer originally intended. This is achieved 
by means of a universal segment identifier known 
as a capability. A capability is an invarient 
address which defines (a) the absolute location 
of a segment of storage, (b) the length of the 
segment, and (c) the kind of access permitted 
(read-only, execute only, read-write, etc.). 
What distinguishes a capability from a traditional 
base-limit protection address is that it can be 
freely copied by the running process itself (i.e. 
it can be loaded into a machine register and can be 
stored into a storage location), but that its con­
tents can in no way be altered. The concept of 
a capability originated in the work of Dennis and 
Van Horn (reference 2), and was proposed in the 
present freely copiable form by Fabry (reference 3). 
The use of the capability mechanisms in SYSTEM 250 
has already been described in detail elsewhere 
(reference 4) and no further elaboration will be 
attempted here. 

The essential feature of a capability is its 
ability to permit the currently running process 

access to carefully controlled and logically 
necessary regions of the store. The hardware is 
arranged so that there is no way in which a process 
can manufacture dat~ patterns and convert them into 
capabilities; thert.fore, there is no way in which 
it can gain access to, and possibly corrupt, other 
regions of the store. This, then, is what is 
required in order to prevent the collapse of a multi­
processor system due to storage corruption by a 
single processor. 

The corollary of the above is that, when faults 
do occur in a processor, the strict control of base, 
limit and access conditions assist the system 
greatly in the fast detection of failures. 

Software Implications - The Operating System 

The capability was primarily developed as a 
mechanism for storage segmentation and information 
sharing rather than for hardware protection. Of 
course, its protection features were always 
recognised in the context of protection between 
programs and it is here that the major software 
implications lie. 

One of the criteria of the general purpose 
computer is that it should be capable of information 
sharing. This is a critical requirement for many 
real-time applications where many transactions are 
represented by processes sharing a common data 
base, but may also be considered a general require­
ment of any computer system in which multi-access 
facilities are required. Computer systems which 
do not allow good information sharing character­
istics must resort to software control of shared 
storage and sometimes to the provision of 
separate copies of program for ·each process which 
requires to obey it. We may restate the require­
ments as follows: a multi-processor system should 
be able freely to execute code re-entrantly and 
should be able to access shared information wl1en, 
and only when, this is a requirement of the progrdm 
logic. The capability mechanism gives us exactly 
this property. Information sharing is permitted 
when required, and entirely denied when access is 
not logically necessary. 

The protection afforded by the capability 
mechanism is extended in SYSTEM 250 to the inter­
faces between subroutine linkages. A program can 
only perform a subroutine call if it possesses the 
necessary capability for the subroutine. The 
access condition set into that capability permits 
'entet access only: that is, the capability can only 
be used to perform a subroutine call and not to gain 
access to the called subroutine's capabilities and 
hence to its data structure. Therefore the called 
subroutine's data structure is completely inaccess­
ible to the calling routine. Similarly, once a 
routine has performed a subroutine call, the 
capabilities awned by that routine are denied to 
the subroutine and this satisfies the converse 
condition, that the calling routine's data 
structure is completely inaccessible to the called 
routine. Information interchange between two 
such routines is therefore strictly limited to that 
which the prograrraner intended: information may be 



passed as parameters in the form of data and/or 
capabilities in the machine registers; or 
information may be made permanently accensible to 
both calling and called routines, by placing in 
each routine's data structure a capability point­
ing to the shared information. 

Given the inter-routine capability protection 
mechanism, it ia now possible to construct all 
programs in a subroutine hierarchy irrespective 
of whether these programs are conventionally 
regarded as part of the application software or 
part of the Operating System software. This 
fact has had a dramatic effect on the design of the 
Operating System for SYSTEM 250 because it permits 
us no longer to regard it as a monolithic software 
package protected from application software 
corruption by means of a single impenetratable 
barrier. Rather, each logical function in the 
Operating System is treated as a distinct 
protected subroutine so that the storage protection 
philosophy within the Operating System structure 
relies on the same capability mechanisms as those 
utilised by the application progr~ms. The 
result of such an organisation is that the system 
is not split into separate application and Operat­
ing System monoliths separated by a 'special 
supervisor mode' of hardware operation and the 
distinction between an Operating System and an 
application subroutine becomes one of administrative 
significance only. 

List Structured Addressing 

It has been stated previously that what 
distinguishes a capability from a conventional 
base-limit protection mechanism is the ability of 
the running process to perform load and store 
operations on capabilities by means of hardware 
instructions embedded in the program. This con­
trasts strongly with systems in which the reloading 
of base-limit registers is undertaken indirectly 
by 1oftware in 'supervisor mode'. 

The free copiability property of capabilities 
enable ■ the progralliDler to use them as invarient 
addresses in an arbitrary list structure and, 
indeed, an unlimited number of copies of a given 
capability can be generated. This distinguishes 
the capability mechanism from other invaricnt 
addre■ s schemes, such as the Burroughs descriptor 
(reference S) which essentially restricts the data 
structure to a tree-like representation. 

The arbitrary information sharing properties of 
the capability are exploited in the SYSTEM 250 
Operating System to provide, in a simple manner, 
multi-progra11111ing and multi-access facilities. 
Firstly, the ability to arbitrarily share code 
segment ■ mean■ that all Operating System routines 
can be obeyed re-entrantly by many processes. 
Secondly, it is possible to strictly protect the 
information belonging to one multi-access user from 
that belonging to another. And, thirdly, it is 
possible for multi-access usersto share information 
in a controlled 1U11nner through a system of direct­
ories. The directory structure is similar in con­
cept to that provided by the MULTICS Operating• 

System (reference 6) but it differs in the following 
important respect: whereas, the directory structure 
in the MULTICS system is organised as a tree, the 
directory structure in SYSTEM 250 can be organised 
as any arbitrary list. Thus, the inter-connection 
of directories exactly mirrors the hardware level at 
which the capability mechanism permits an arbitrary 
interconnection of segments. This feature can be 
exploited to give precise information sharing 
properties to a system comprising groups of users 
of various classes. Our telephone switching 
example illustrated some of the many man/machine 
interaction requirements involving the sharing of 
some information. However, many of the classes of 
user are performing quite specific and separate 
tasks which do not require a great deal of 
administrative interaction. This is reflected 
in the organisation of directories to which these 
users are given access: it is the responsibility 
of the administration to organise the directories 
into a suitable list structure. 

Conclusions 

In conclusion, therefore, it has been shown 
that the requirements of computer systems in 
telecolll\llunications applications are far removed 
from the facilities conventionally provided by 
either telecommunications processors or data 
processing machines. The facilities of a 
'general purposP. computer' suitable for these 
applications have been derived, the main features 
being incremental expandab~lity of storage and of 
processing power, automatic reconfiguration of the 
system following hardware or software failures, 
and the simple interconnection to distributed 
tulecommunications equipment and to man/machine 
interface devices. 

It has been argued that to satisfy the above 
features, a computer system should be organised 
as a multi-processor with each processor equally 
capable of sharing the work available. This 
re~uirement in turn leads to two design conflicts 
which have been resolved in the design of the 
SYSTEM 250 computer system by, firstly, the 
abolition of external interrupts and, secondly, 
the use of a universal segment identifier known as 
a capability. 

It has further been illustrated that the design 
solutions to these two conflicts have been turned to 
our own advantage because the problems involved have 
forced us to think out from first principles the 
necessary and sufficient features of a true 
'general purpose' computer sys;em. In particular 
we have been able to avoid an expensive and self­
defeating approach to the production of channelling 
hardware, by recognising that the trend in this area 
towards increasing complexity implies a trend to­
wards the use of standard processing equipment; we 
have been able to capitalise on the protection 
features of the capability mechanism by the design 
of a modular Operating System organised as a series 
of protected subroutines; and we have used the 
concept of free copiability of capabilities to 
reflect into the user terminal level of the system 
the idea of an arbitrarily interconnected structure 



of directories. 

In particular, the capability mechanism, which 
is such a central feature of the SYSTEM 250 hard­
ware architecture, enables-us to claim three 
quite distinct achievements: the protection of 
information in a multi-processor system against 
hardware failure, the modularisation of Operating 
System and application software into a protected 
subroutine hierarchy, and the efficient and 
arbitrarily constrained sharing of data structures 
between competing processes. This leads us to 
believe that this concept represents a significant 
and essential advance in both hardware and soft~ 
ware technology and that SYSTEM 250 provides both 
the sufficient and the necessary features of a 
'general purpose computer'. 
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SUlllllat'y 

This paper describes some of the aspects of the 
Plesaey SYSTEM 2.50 real-time processing system, and 
is an accompanying paper to those presented by 
my colleagues from Plessey U.K. 

The requirements of a Real Time processor 
system suitable for the control of a c0111Dunications 
application are evaluated. The ability of SYSTEM 
2.50 to fulfil these requirements and the hardware 
architecture which provides the characteristics 
10 urgently required by the communications industry 
is described. 

A general description of the hardware of the 
processor is included and the use made of 
capabilities in ensuring the detection and isolation 
of fault occurences within the working system is 
described. Particular attention is drawn to the 
fault recovery sequence and the diagnostic 
facilities which enable the working system to live 
through fault conditions and offer the grade of 
service required by the application, 

General Introduction 

SYSTEM 250 was designed at the outset to meet 
the exacting control requirement of telephone or 
data message switching systems. It should be 
appreciated that this application demands an 
exceedingly high standard of performance in almost 
all of the areas considered important in Real 
Time applications, Convential computer systems are 
inadequate when examined against the essential 
requirements already established by conventional 
switch eq~ipmenta, The characteristics of a 
computer syatem which will satisfy the stringent 
requirement ■ of exchange control are suimnarised 
un~er the following headings: 

Continuity of service 
Eaae of expansion 
Ability to Evolve 
System Partitioning and Security 
Flexibility 
High Power/Coat Ratio 

Continuity of Service 

The Britiah Poat Office has devised a slidin« 
Scale defining the allowed minimum reliability of 
telephone exchange control equipment. The scale 
ranges over 1teps from failures of the control · 
equipment of leas than 15 seconds which can be 
tolerated up to SO time ■ per year, to failures of 
more than ten minutes which should not occur more 
than once in SO years. These reliability figures 
must be maintained despite: 

(a) The existence of undetected software error• 
within the ayatem. 

(b) Occasional on-line expansion or modification 
of both the hardware and the software component,. 

(c) The need for long periods of unattended 
operation. 

Ease of Expansion 

A further requirement is that each individual 
system should be economically viable from the date 
of first installation. They must offer a growth 
potential such that the system is capable of 
ON-LINE expansion of any facility (e.g. Storage,. 
Processing Power, or Input-Output Capability) by a 
factor of three during the expected life of 25 
years. These extensions should not require al­
teratfons or re-compilation of the existing prog­
rams or cause any loss of service, 

Ability to Evolve 

A computer system which is expected to be 
operational for more than two decades can only 
remain economic if its architecture permits .the 
inclusion of advances in hardware technology. The 
software architecture must also provide the 
flexibility necessary to absorb the undoubted 
changes which will be required to provide the, 
as yet, unforeseen facilities to be offered 
in the future. 

System Partitioning and Security 

The system hardware and software must be 
partititioned in a secure manner such that 
information transfers can be monitored, and 
faults or errors detected quickly and contained. 
The aim is to prevent corruption of and/or un­
authorised ,.ccess to system resources, in 
particular storage media, with minimal overheads 
in power, coat and complexity. 

Flexibility 

The control system is required to be flexible 
in both the hardware and software architecture 
such tlu1t a wide range of configurations with 
differing requirements can be controlled by 
differing configurations which minimise the cost 
of each system. In particular the system must 
be capable of efficiently controlling large 
numbers of low activity peripheral devices, 

Introduction to System 2.50 

SYSTEM 2.50 is a modular multi-processor 
system, The central system modules are 
Stores, Processors, and Multiplexors. Standard 
and non-standard Peripheral devices of all types 



can l,e attached as will be described subsequently. 
Twenty four bit word lengths are used for all 
memory addressing, instruction formats, and data 
storage. Thus the total memory capacity is in 
theory in excess of 16 million words. The inst­
ruction repertoire has been simplified to twe~ty 
seven basic operations, with inter-register, store 
and register or literal options available when 
meaningful. 

Peripherals Devices are addressed via 
Control and Data registers which appear to the 
Processor to be exactly.similar to the normal random 
access storage connected to the Processors, and it 
has, therefore, been possible to eliminate all 
specific peripheral handling instructions. Inate,. 
the normal Load Register and Store Register inst­
ructions arc used, with addresses which specify 
the appropriate register within the desired 
peripheral device. 

System Architec~ure 

Interconnection of the Processors to 
attendant storage and peripherals is achieved over 
a 60 signal bus system, each Processor having an 
individual bus. Interface Units are used to 
attach stores and peripherals to these buses. 
See Fig. 1. 

STORE S~E 

INTERFACE INTERFACE 
UNIT UNIT 

I 

PROCESSOR PROCESSOR 

I 

The function of the Interface Unit is to recognise 
requests for access to the module , resolve 
contention between individual requests from 
separate processors, and to allocate each request 
a cycle of access to the module. A system with 
up to eight processors is currently possible, witb 
each of the Store Modules equipped with an 8 po~t 
Interface Unit. Peripheral Deviceo, however, are 
equipped with only 2 port Interface Units, 
When, therefore, there are 3 or more proceesors, 
pi!ripherals connect to a Peripheral Bus systmn, 
driven by Multiplexors which can be equipped with 
8 ports. Thus the more expensive 8 port 
Interface Units are not required throughout the 
Peripheral area. Two Multiplexors are required 
for security, and if either one should fail all 
traffic is passed through the alternative unit. 
See Fig. 2. 

Up to 40 Modules can be attached to each Bua, 
over distances of 100 metres. 

Only high activity, or fast speed devices, 
need be connected directly to the Bus system, e.g. 
Backing store devices. Low activity or slow 
speed devices such as user terminals or the 
appli.cation terminals of a real time system are 
connected to a serial data collection and 
distribution system known aa the Serial 
~e-iium. See Fig. J. 
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Fig 2 Expanded Processor system showing Multiplexors 
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The Serial Medium is controlled by a device 
connected to the Bus system and known as the 
Serial Parallel Adapter (SPA), Packets of address 
and data are collected or distributed by the SPA, 
via a cascaded arrangement of Data Switches which 
multiplex and demultiplex the message paths, 
Tarl'linals can be connected to the Serial Medium 
at any switch outlet so that some devices may be 
connected at the first switch others at subsequent 
switches. Each device has a unique address which 
is used to route outgoing messages to the device, 
and is assembled during incoming messages to the 
S•A. Check codes are used to validate all 
message transfers. 

Each device which is connected to the Serial 
Medium is equipped with a 2 port Serial Access 
Unit for connection to two separate Serial Mediums. 
This is done for security of communication if 
either path should fail. 

The modular structure of the SYSTEM 250 has 
been arranged so that individual system 
parameters can be matched in the most economic way 
possible, Stores for example can be built up in 
units of 8, 16 or 32K in slow, medium or fast 
access times ranging from ~s to 300ns to match 
the data storage requirements. Numbers of 
processors can likewise be matched to the work 
requirements and the security requirements. 
The number of peripheral terminals can similarly 
be equated to the requirements of each installation. 
Further the System can be expanded in small steps 
by the addition only of the required module. 



Capabilities 

Each Processor has access to all modules 
connected to the system. Consequently each 
Processor represents a security hazard i.f either 
a hardware fault or a software error ,.·ould 
corrupt a location by accident. The concept 
of Capabilities has therefore been implemented 
in the Processors to protect against corruption 
of invalid areas of storage, including 
Peripheral devices. Reference 1 discusses the 
necessity of capabilities and provides more 
detailed references. Capabilities are 
descriptors which identify the separate 'logical' 
entities within the system and the users 
access rights to the logical block. The 
Operating System loads these logical blocks into 
physical address space and allocates the Base 
and Limit address values accordingly via a map 
known as the System Capability Table. 
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I WRIT( DATA P[RMITTf.D I 

! I EltCUT[D DATA PE.IIMITT[O 
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WRITE CAPABILIT'f' P[IMITTED 

fNTEA CAPAIILITY P[AMITTEO 

SPA.A[ 

!.!i.; Th• Capability format 

The Hardware of the Processor provides eight 
Capability Registers into which can be loaded 
the Base, Limit, and Access field of se~arate 
addressable blocks required by the program. 

I 

It is emphasised that the use of capabilities 
in no way.restricts the flexibility of 
programming at writing time. The function of 
capabilities is to ensure that once defined by 
the program, the limits (Base, Limit and Access 
Rights) are observed by the hardware and the 
process at run time, even under fault conditions. 

Thus capabilities are a valuable mechanism 
in protecting against the ty?e of fault which 
causes the progressive corruption and final 
breakdown in a multi-processor system. The 
basic aim in using capabilities is to restrict 
the effect of a fault to the currently running 
process, and to identify the existence of a 
fault immediately it occurs. 

Processor Architecture 

ln order to understand the principles of 
system operation it is necessary to describe 
the architecture of the Processor • Reference 
2 describes many of the hardware aspects of the 
processor which are not described in detail here. 

Co 

C7 

Do 

07 

Lii,ilT __ _ 

STORE 

TYPICAL 
ILOCll 

PROCESS 
CAMBILITY 

POINTER 
8LOCK 

CURRENT 
CODE 

BLOCK 

MASK REGISTER l 
} 

MOOIFIER CENERAL 
t----------1 REGISTERS ACCUMULATORS --------------------.-J 

There are eight fifty bit (48 + 2 parity) general 
purpose capability registers CO-C7. Conventionally 
C7 is required to hold the currently executed code 
block and C6 defines the Process Capability 
pointer block, which in general defines the 
working set of 'capabilities' available to the 
code block in execution •. The remaining registers 
CO-CS are loaded by a standard instruction, 
'Load Capability', under programmer direction. 

There are eight twenty four bit data 
registers DO-D7 all of which can be used as 
accumulators, and seven of which can be used as 
address modifiers. In addition to these two 
sets of working register the hardware provides 

,further 'hidden' Data and Capability registers 
required for efficient operation,and these cover 
timer registers, indicators, etc. 

All memory addressing is performed by the 
addition of a selected Base value of capability 
register to an offset (derived from the 
instruction). Before any store operation is 
performed this final memory location is then 
checked to be greater-than the Base value, 
since negative modification is possible, and 
less than the Limit value. Similarly, the 
micro-program action, Read or Write, is checked 
to be permitted by the Access field of the 
selected capability before the Store operation 
is allowed to complete. Fault interrupts are 
generated if any violation of the capability is 
attempted. 

Clearly the system places great reliance 
upon the validity of the capability registers 
and the data held by them. Therefore a 
considerable number of checks are involved when 
loading and using capability registers which 



together ensure that no single hardware or software 
failure can pass undetected by one or other of the 
checking mechanism. These mechanisms include a 
twenty fou~ bit sum check. parity checks and 
register addressing checks. 

Six basic capability manipulation instructions 
are provided which permit the programmer to 'Load' 
capability registers, 'Pass' capability blocks 
from one procedure to another, 'Call' and 'Return' 
from sub-routines, and 'Changing Process'.:" In all 
these cases, however, the Base, Limit, Adcess 
Field valuea of the capabilities manipulated are 
set by the operating system and not directly under 
the programmers control. 
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Fig.6 The Loac1 capability sequence ........,., 

The selection of the Base, Limit and Access 
Field is arranaed v5a the System Capability 
Table held in one of the 'hidden' capability 
registers. Within this 'map' is described all 
the currently available blocks referenced in 
main store. Each user of the system, has a 
set of 'capabilities'. Each capability specifies 
an Access Field and the offset of one of the 3 
word packets held in the 'map'. The Capability 
manipulation instructions reference the 
available 'capabilities', this in turn enables 
the hardware to select and load the assigned 
Base, Limit and Access Fields into the 
Capability registers of the Processor. Thus 
the logical capability is converted into a physical 
address at run time. 

It must be stressed that although the programmer 
is at liberty to load into a register the assigned 
Base and Limit values of any of his available 

capabilities he cannot alter either the values 
of his own set of logical capabilities, or the 
corresponding physical Base and Limit values. 
rhis is effected by disallowing the WRITE DATA 
facility on a capability block. 

Theref~re at all times, the range of Memory 
locations which can be accessed is limited to 
the available 'capabilities' and the corresponding 
Base Limit values held in the System Capability 
Table. 

Fault Detection and Recovery 

:tn order to protect the working system from 
progressive collapse due to the migration of 
faults through the system, the Processor performs 
a Fault Interrupt i11111ediately the fault condition 
is recognised, and before any actual capability 
violation can occur. The Fault Interrupt 
sequence is critical in order to preserve the 
system security and therefore in understanding 
the system recovery mechanism. The hardware 
sequence is consequently described in some 
depth, Reference 3 elaborates the system 
philosophJ, and recovery sequence ensuing after 
a hardware fault. 

The actions executed by the microprogram 
are repeatable and subsequent fault indications 
cause the sequence to be re-attempted. 
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FAULT ENTRY 

+ 
NULLIFY ALL CAPABILITY 

REGISTERS EXCEPT 
START UP BLOCK 

+ 
PRESERVE FAULT INDICATORS 

+ 
3 INCREMENT START UP 

AREA TO NEXT MODULE 

+ 
4 RELOAD SYSTEM CAPABILITY 

TABLE FOR START UP SEQUENCE 

+ 
5 MCHANGE PROCES~ 

TO 
START UP PROCESS 

Pig. 7 The Fault Interrupt Sequence 



Firstly the currently loaded Base and L1m1t 
values are corrupted to give invalid parity detection. 
This ensures that even given incorrect sequencing 
through the Fault Interrupt microprogram any attempts 
to access the memory locations of the previously 
running Process are prevented .. 

Secondly the Fault Indicator register is stored 
into a hidden register to preserve the fault 
indication. The Fault Indicator ~egister is then 
cleared. 

Thirdly, the Start J't Capability Register 
C (S) is incremented by 2- · so that it now 
references a different memory module. This ensures 
that during multiple fault conditions the Processor 
attempts to 'Start Up' from each of the available 
store modules in turn until it succeeds. 

Fourthly, the Capability Register referencing 
the System Capability Table C(C) is reloaded with 
a Sumcheck, Base and Limit value held as the first 
three entries defined by the Start Up Capability 

register C(S). The block thus loaded references 
a new and limited set of Base and Limit values 
available to the Start Up Process. 

Finally the Change Process microsequence 
is attempted using the Capability held as the 
fourth entry in C(S). 

When each of these steps has been executed 
successfully the Fault Interrupt Process is 
activated. This Process will run vith a limited 

set of mem0ry locations available thus preventing 
interference with other Fault Free Processors. 

The pre-requisite of the Fault Interrupt 
sequence is that at least one valid copy of the 
5.tart Up Block and the associated Program and Data 
block exists in any one of the equipped Store 
modules. Similarly if the Processor has a 
hardware failure which prevents the successful 
activation or completion of the Start up Process 
the hardware is condemned to an eternal cycling of 
the Fault sequence in an endless attempt to recover. 

Note that the system recovery sequence which 
follows a fault detection can be made as rigorous 
as the application requires, Reference 3 
discusses this in more detail. 

On··Line Diagnostic Facilities 

In order to achieve high reliability at 
reasonable cost the Mean Time to Repair faulty 
modules must be reduced to a minimum. In broad 
terms this has tvo effects. Firstly, the 
possibility of a second failure within the critical 
part of the system during the 'do'W'tl time' of the 
first module is minimised, thus improving the 
system reliability, or alternatively, for & fixed 
reliability the number of redundant modules of any 
one type is minimised thus reducing system cost. 

SYSTEM 250's diagnostic software ana maintenance 
procedure is an integrated system which minimises 
the system repair time. The novel aspect of this 
system is concerned with Processor diagnostjc 
software. 

Processor diagnostics are normally an 
extension of functional test programs, They 

· are run on suspect machines in the hope that the 
fault will not be serious enough to prevent the 
successful completion of the test program. Out­
put is then produced which indicates the faulty 
component. There are two hazards in this 
approach, the first is that the fault could reside 
in the 'hard core' of the machine and either prevent 
the successful output of any message, or faulty 
output may be obtained, second, the processor, 
although suspect, requires the use of system 
resources in order to run and output any message. 

For System 250 this is unacceptable for two 
crucial reasons. Firstly, the whole nature of 
the design is oriented towards a 'hard core' 
whichincludes the whole machine, it is in this 
r,ay that faults are indicated immediately. 
Secondly, faulty processors are trapped in the 
fault recovery sequence deliberately so that 
they cannot make use of systems resources. 

However, as a consequence of Syotein 250's 
multiprocessor philos9phy, it has been arranged 
that the diagnostic routines run on a working 
processor which then interrogates the suspect 
machine. 

PROCESSOR PROCESSOR 
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Each Processor module has an optional 
'Diagnostic Interface'. This interface is 
exactly the same in operation as the Store and 
Peripheral Interfaces connected to the Store 
Bus. Each Processor can therefore be connected 
to the Test Interface of one of the other 
machines in the System, either directly or via a 
Multiplexor, The internal logic of each processor 
is therefore addressed as memory locations. The 
appropriate 'Capabilities' must be loaded into 
the hardware registers of the interrogating 
processor in order to address the suspect machine. 



A set of C011mands are provided as part 
of the Diagnostic Interface which facilitate 
the operation of certain essential functions. 
STOP MAIN PROCESSOR CLOCK 

START MAIN PROCESSOR CLOCK 

PERFORM SINGLE SLOT WORKING 

PERFORM SINGLE INSTRUCTION WORKING 

REPEAT A PARTICULAR INSTRUCTION 

STOP AT A PARTICULAR INSTRUCTION ADDRESS 

STOP AFTER "n" SLOTS 

STOP AT A PARTICULAR MICROPROGRAM SLOT 

STOP AT A FAULT CONDITION 

MONITOR MICROPROGRAM CONTROL SIGNALS 

FORCE MICROPROGRAM CONTROL SIGNALS 

MONITOR INTERNAL REGISTERS 

FORCE INTERNAL REGISTERS 

Fig.9 .The Diagnostic Interface Commands 

In the simplest terms the registers can be 
loaded with a known pattern, clocking functions 
can be performed and the register can be 
exalllined and compared with a known result. 
Discrepancies are isolated to single paths and 
the results indicate far greater fault resolution 
than is possible by traditional methods. 

The diagncstic package will provide fault 
analysis down to one board (or a small number 
ofboards when, for example, 'wire-or' functions 
are faulty). · 

Conclusions 

Each characteristic of SYSTEM 250 was 
conceived to satisfy one or more of the design 
requirements detailed at the start of th;s 
paper. 
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SYSTEM 
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FiQ.10 The System Characteristics 

While not exhaustive, it is hoped that 
this paper, in conjunction with the others 
presented by my colleagues, has indicated the 
principles of operation of SYSTEM 250 its 
architecture, and its power. • 
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RELIABILITY ASSURANCE FOR SYSTEM 250 
A RELIABLE, REAL-TIMF. CONTROL SYSTEM 

C. s. Repton 

Plesaey Co. Ltd. 
Liverpool, England 

Summary 

System 250 is a multi-processor system designed 
for real-time communication applications where very 
reliable operation is required. The initial appli­
cation of this system (control of a telephone ex­
change) is required to achieve a mean time between 
failure of 50 years, where a failure is defined as 
a system outage lasting over ten minutes. 

The paper describes in a general way the 
problems involved in providing this degree of 
reliability, and some solutions which can be adopted, 
The approach which is being used in the design of 
System 250 is described. 

Particular emphasis is placed on the initial 
stages of recovery which ensure that a fault-free 
system configuration is set up and that a basic 
minimum set of programs are correctly loaded and 
worki·ng, allowing the system to bootstrap its way 
back into full operation. The hardware and software 
mechanisms used to achieve this basic level of 
recovery are described in some detail, and the 
methods used to secure these mechanisms themselves 
against the effect of fault conditions are also 
considered. 

Introduction 

The application of computer syttems to real­
time control situations is rapidly expanding. 
Many of these applications, such as air traffic 
control and communication systems, are essentially 
continuous activities which demand very reliable 
control systems. This means that the design of 
highly reliable computer systems is becoming in­
creasingly important. This paper describes the 
methods used to secure a real-time, multi-processor 
system (System 250) against failure and discusses 
some of the problems involved in providing reliable 
system operation. 

System 250 has been designed for communication 
applications, such as control of telephone 
switching, where continuous, reliable operation is 
required. A typical requirement of this type of 
application is a mean time between system failure 
of 50 years, where a system failure is defined as 
an outage lasting over ten minutes. 

Previous papers1 •2 have outlined the overall 
configuration of System 250. The main features 
are that the system uses a group of functionally 
identical processor units connected to a group of 
identical store units. This type of configuration 
can be made to perform like one large, very powerful 
computer, and yet its power can be economically 
increased in small steps simply by adding more 
processor or storage units. 

Since all units are functionally identical any store 
module can replace any other store module, and 
similarly any processor unit r.an replace any other 
processor. This means that equipment failures 
can be catered for fairly simply. In the event 
of a unit failure the faulty unit is isolated and 
the functions of that unit are then reallocated to 
other modules in the system which have some spare 

· capacity. 

The software which is used to control this 
hardware configuration can usefully be c~nsidered 
as a number of distinct layers or levels • As 
each new layer of software is added to the system 
it is used to extend, or present in a more con­
venient form, the facilities which are available, 
In effect the first layer takes the bare facilities 
provided by the machine instruction set and adds 
to them by providing further facilities within 
the software. This provides subsequent levels in 
the hierarchy with an enhanced version of the 
original machine, a kind of 'virtual machine'. 
The additional levels use this extended machine to 
produce further, more powerful facilities. Thus 
as one progresses along the hierarchy the facilities 
provided by the virtual machine at each level be­
come increasingly useful and powerful. 

In the case of System 250 the first software 
level takes the multi-processor, multi-store 
system and converts it into a virtual machine which 
appears to subsequent levels to be one large, very 
fast processor with one large store. All the 
problems assoc'ated with multiple processor op­
eration are handled at this initial level, and 
subsequent layers need not consider the multi­
processor nature of the system. The next level 
in the hierarchy provides convenient input/output 
facilities and controls the backing store devices 
such as discs, so that lower layers see a very 
much larger store system than that provided by 
the main store alone. The next level provides 
operator communication and facilities such as 
program assembly, editing, job control etc. 
Finally on the last level come the application 
programs which actually perform the real-time 
operations (Fig. 1). 
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There may be several sets of application 
programs in a system such as this. For example, 
one central control system may control several 
remote telephone exchanges, Other functions may 
be required which are related to, but not part of 
the main real-time activity, For example a • . , 
maintenance sub-system to allow on-line testing 
may be added or a program development sub-system 
to allow ~ew ~rograms to.be developed and debugged 
before being introduced into the real-time system, 

Recovery Mechanisms 

Based on this broad description of System 250 
let us now consider the type of facilities and 
mechanisms which will have to be built into the 
system to allow it to recover automatically from 
fault situations, 

Obviously the system will have to cope with 
failures within individual processor units and 
store modules, so that we require some means of 
detecting that a fault has occurred and locating 
the fault to a particular module, The faulty 
module can then be isolated so that it cannot 
interfere with the rest of the system. Finally 
any data which may have been lost or corrupted 
by the fault must be restored so that normal 
operation can continue. Typically this will 
involve reloading lost programs and data in the 
event of a store fault, and abandoning or re­
constituting suspect data after a processor 
failure. 

The system will also havP to deal with software 
!aul~s, On the basis of past experience it seems 
1nev~ta~le_that even after thorough testing and 
coumission1ng all but the smallest system will 
still contain design errors in the software. 
This means that the system will occasionally 
behave unpredictably when certain rather rare 

b • . , • 
com inat1ons of data or timing ci.rcurnstances 
occur. All that is required in this case is to 
re~et any data which has been affected by the 
fa~lure and restart processing using fresh data. 
This type of data recovery mechanism is similar 
to that required to deal with the after-effect 
of processor failures, as described above. 

Thus, in general, each recovery action includes 
three distinct phases:- The first is the 
detection that an error has occurred. The second 
is an attempt to locate the fault to a particular 
hardware unit. This may not succeed, either 
because insufficient information is available or 
b~cause the fault is caused by a software problem. 
Finally the third phase will involve some form of 
data recovery or restart procedure which will 
allow the system to resume normal processing. 

Within System 250 the mechanisms used at 
each stage of recovery are as follows:-

The error detection mechanisms which are used 
are:-

(1) fault detection circuits built into the 
hardware. 

(2), software conai1tency checks and time-outs to 
monitor overall system performance. 

(3) teat routines run in background mode. 

The methods used to locate the fault to a 
particular unit are: 

(1) Persistent fault conditions reported by 
c.heck circuits. 

(2) If the error detection mechanism implicates 
a parti~ula: unit or units (for example hardware 
check circuits or test routines) a fault count 
associated with the unit or units can be in­
cr~ented in order to d2tect persistently failing 
devices. 

(3) A localised test procedure can be used to 
test units which are suspect as the result of 
an error indication from a hardware check 
circuit or failed test routine. 

(4) The testing sequence can be extended to cover 
all units within the control system. 

(5) Ls a last resort units can be switched out 
of system on a trial basis in an attempt to find 
a viable system configuration, 

There is obviously a very wide range of data 
recovery and restart procedures which can be 
adopted. We have found it useful to adopt three 
stages of recovery action which provide 
progressively more extensive restart facilities, 
These are:-

(l) Process Restart Each process, or 
transaction, in the system has a defined recovery 
action which can be activated if that process 
meets any form of error condition. The recovery 
action involved- will vary depending on the nature 
of the transaction, and these can range from 
regenerating data areas, and restarting the 
failed process in the case of a vital system 
function, such as a disc handler, to simply 
ending the failed process and printing 
diagnostics. 

(2) Area Restart Each functional area within 
the system has a defined recovery action which 
will allow read/write data to be regenerated 
from duplicate files held on disc by that area. 
This may allow complete data regeneration, but 
more usually, some transactions will be abandoned 
and only the most important functions will be 
made restartable by storing redundant information 
on disc, This type of restart is commonly 
referred to as a 'warm start', 

(3) Area Reload Each functio~al area also 
~as a defined recovery action which will allow 
processing to be restarted from read-only 
information in duplicate, sum-checked files 
held on write-protected areas of the backi11g 
store. This form of recovery obviously involves 
abandoning all current transactions, reinitialising 
the system and then resuming processing new 
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transactions, This type of restart is coUDDonly. 
known as a 'cold start'. 

Recovery Procedures 

We have now considered the basic elements 
which are available for use in constructing 
the required recovery procedures. Before 
moving on to discuss the form taken by these 
recovery procedures it is worth making the 
following observations:-

(1) the hardware test and data recovery pro­
cedures involved can themselves disrupt system 
operation, for example it is difficult to perform 
a complete test on every hardware unit :in the 
system without causing some disturbance to normal 
on-line processing, and the various data recovery 
procedures often abandon perfectly valid trans­
actions rather than attempt a complex validity 
checking operation. 

(2) the error indications do not always pin-
point the source of the fault or the identity 
of the corrupt data. Processors may trigger 
hardware check circuits as the result of 
attempting to process invalid data corrupted by 
faults elsewhere in the system, and it is impossible 
to predict just how much data may have been dis­
turbed by any given software fault, 

This means that it is very difficult to adjust 
the recovery action so that the fault is 
corrected and yet the disturbance to system 
operation is minimised. 

In the circumstances the best strategy is to 
combine the various fault location and data 
recovery/restart procedures into a sequence of 
recovery actions. Initially the action which 
causes least disruption to system operation is 
used. If this fails to clear the fault, as 
indicated by further error reports, then in­
creasingly powerful (and hence more disruptive) 
recovery actions are used until the fault is 
cleared, as indicated by the absence of further 
error indications. 

The sequence of actions which has been 
adopted in System 250 is shown in Fig. 2. 
Error indications which do imply the location of 
a fault (hardware check circuits and failed te~t 
routines) cause a fault count to be incremented 
for the unit, or units involved. If one unit is 
consistently implicated then the fault count in­
dicates this. A local testing procedure for the 
suspect units is also activated. If either of 
these mechanisms detect a consistent fault the 
system is reconfigured to isolate the faulty unit. 
In the case of a hardware check circuit indication 
it is also necessary to restart the process 
which was running at the time of failure as the 
data associated with this transaction is now 
suspect. Repetitive errors detected by hardware 
check circuits within a short time interval 
•uggest that the fault may be due to a software 
problem within the failing area rather than a 
hardware fault. Therefore in this case the 
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recovery action is extended to cover the failing 
area rather than just the process involved. 

Faults detected by sof~ware checks cause a re­
start of the functional area detecting the fault. 
If the error is due to a software pro.blem within 
that area this should clear the fault. 

Further repeated error indications of any 
kind cause a general system test to be performed 
which thoroughly tests all control system elements. 
Ai.1y faulty units are isolated and the system is re­
started by means of an Area Restart applied to all 
functional area~ This procedure will eliminate 
any data corruption in main store and will recove, 
the vast majority of all solid hardware faults. 

If further error indications are generated 
t12.n another general system test is initiated in 
the hope of detecting possible intermittent 
hardt.•are faults. Any faulty units are isolated 
and the system is reload~d by means of an Area Re­
load applied to all functional areas. This will 
reload the system using duplicate read-only files 
from backing store. This eliminates any 
possibility that further system failures can be 
caused by corrupted data generated by an earlier 
fault. 

After this stage the only faults which can re­
main undetected are intermittent hardware faults or 
solid faults not detected by the test routines. 
Therefore, as a last resort, subsequent fault 
reports initiate another general system test in a 
further attempt to detect intermittent failures. 



If no new faults are found one of the units is 
switched out on a trial basis (trial reconfiguration) 
The system is then reloaded by applying an Area 
Reload to all functional areas.Repetitive appli­
cation of this procedure will eventually 
eliminate faulty units which remain undetected by 
the test routines. 

Overall Structure of the Security System 

The previous section discussed the sequence 
of actions which should be followed when an error 
is detected within the central control system. 
The group of programs concerned with controlling 
this sequence are referred to as the basic 
recovery system, and form an additional layer in 
the software hierarchy (Fig. 3). 
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Software Structure showing Basic Recovery System 

When discussing the functions provided by the 
various levels in the hierarchy it was shown how 
the basic supervisor, which contains the 
scheduling and store allocations routines, 
effe·ctively concealed the multi-processor, multi­
store nature of the system from the lower levels. 
Programs involved in lower levels could be written 
on the assumption that they would run on one large 
processor with one large store. The basic 
recovery system performs a similar function in 
that processor and store failures are dealt with 
at this level, and lower 1evelsin the hierarchy 
do not nee&,to be concerned with the possibility 
of hardware failures. They can be written on the 
assumption that they are always held in a fault­
free store module, and are obeyed by a fault-free 
processor. Thus although several copies of the 
basic recovery procedures must be available to 
protect this level against store failures, 
programs on lower levels do not need to be dupli­
cated. If a store module fails, the programs 
held in that module will be reloaded into a new 
module by the basic recovery system. Therefore, 
placing the basic recovery system at the highest 
level in the hierarchy reduces to a minimum the 
amount of program which must be replicated. It 
also simplifies the system since lower levels do 
not need to consider the possibility of hardware 
faults. 

The software checks required to provide an 
error detection mechanism should be distributed 
throughout the system so that each level contains 
its own independent set of checks. Similarly it 
is convenient to provide data recovery and restart 
procedures on a per level basis. This means that 
each level becomes an independent functional 
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area, with its own set of software checks, and 
its own restart procedures. 

The software checks report any 
errors to the basic recovery system which can 
then initiate the appropriate recovery action, 
which may involve invoking restart procedures 
provided by the lower levels, This modified 
hierarchical diagram is shown in Fig. 4. 

This type of system structure means that as 
one progresses down the hierarchy not only do 
the number of facilities available increase, but 
it is also possible to make wider assumptions 
about the state of health of the system. Below 
the basic recovery system programs may be written 
on the assumption that all hardware faults have 
been eliminated from the system. The only 
responsibility that these lower levels have with 
respect to system reliability is to maintain an 
overall measure of performance through the soft­
ware checks on that level, to report consistent 
faults to the basic recovery system on the 
assumption that the degradation is due to some 
form of system fault, and to provide the standard 
recovery procedures. Below the level of the 
basic supervisor it may also be assumed that 
reliable store allocation, and scheduling facili­
ties are available, since it is the responsibility 
of the software checks and restart procedures 
within the basic supervisor to ensure this. 
Below the input/output level it may also be 
assumed that reliable system peripherals are 
available, and, for example, an application 
program written to test a particular piece of 
application hardware can ignore possible side 
effects due to faults on the input/output channels. 
It is th~ responsibility of the input/output 
routines within the operating system to eliminate' 
these fau.lts. This expanding level of confidence 
continues right down to the application/operating 
system interface where it may be assumed that 
processors, stores, input/output c'annels and 
system peripherals are working correctly and that 
the full range of operating system facilities 



ia available. Of course, it is the responsibility 
of the application programs to cover the effects 
of faults in any special peripherals controlled -
wholly by that application. 

Thus the overall reliability of the system is 
based on a hierarchy of guarantees. At the top of 
the hierarchy the basic recovery system provides 
fault-free stores and processors. Working trom this 
base the other levels can then guarantee fault··free 
input/output devices and operating facilities to 
the application programs. By using this wider 
base the application programs can now secure their 
own specialised peripherals against failure. In 
many ways this hierarchy of guarantees parallels the 
functional build-up of the system, which is based 
on using the facilities provided by higher levels 
to make extensive or sophisticated facilities 
available to lower levels. 

Securin~ the Security System 

In the scheme outlined above everything 
depends on the ability of the basic recovery 
system to guarantee fault-free processors and 
stores to the lower levels. One of the main 
problems involved in producing a workable security 
system is to ensure that the basic recovery system 
itself is not disabled by fault conditions. 
Obviously several copies of these recovery programs 
must be provided in sep~rate store modules to protect 
them against store failure, and some form of 
protection must be provided to prevent these multiple 
copies being overwritten by a faulty processor. 
The recovery programs must also be accessible to 
several processor moaules, to cover processor 
failures. 

These requirements could be most easily met 
by noninating some, or all, of the processors as 
'fault handling' units and providing each with a 
private store module containing a copy of the 
recovery programs, Fig. 5. In the event of a 
store or processor failure one, at most, of the 
store/processor pairs would be disabled and unable 
to take effective action. The other processors 
would then be able to clear the fa•Jlt and recovery 
system operation. 
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As each of the store modules containing the recover 
pr~grams would be accessible to one processor only, 
this would protect the recovery programs from 
faults in other processors. 

However, this method does have considerable 
disadvantages, Because each of the fault 
handling processors accesses a particular copy 
of the recovery programs when a fault is detecte<l 
it is difficult to prevent faults in the store 
associated with these programs also disabling 
the processor. This effect considerably 
reduces the mean time to failure of the processors. 
In addition this scheme can involve a considerable 
cost penalty, particularly in large systems, 
because a store module per 'fault handling' 
processor is required for the recovery programs. 

In contrast System 250 allows any processor 
access to all copies of the recovery programs 
(see Fig. 6). This means that:-

(1) failure of a store containing a copy of 
the recovery programs does not also disable a 
processor. 

(2) it is only necessary to provide sufficient 
copies of the recovery programs to protect the 
system against simultaneous store failures. 
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This arrangement is made possible by two 
features of the processor hardware:-

(1) the capability mechanisi• which was 
described in a previous paper, provides a very 
secure store protection facility, and protects 
the recovery programs against the possibility 
of being over-written in the event of a hardware 
or software fault. 

(2) the fault interrupt mec~anism, also 
described in a previous paper, which together 
with the test program in the first section of 
the recovery programs, is used to control access 
to the recovery programs. 

To illustrate this scheme assume, for the 
moment, that the only form of entry to the recovery 



programs is via a fault interrupt. This !My be 
an involuntary interrupt resulting from an attempt 
to perform some illegal operation, or it may be 
a deliberate attempt to invoke the recovery 
mechani8111 because some error condition baa been 
detected by the aoftvare. On ta.king a fault 
interrupt the PP250 hardware first disables all 
the current capabilities held in the machine, thus 
preventing further access to store. It then 
attempts to reload a new set of capabilities from 
a pre-designated location in store. If thia is 
completed successfully the resulting capabilities 
are used to access the first part of the recovery 
program. Thiu ia a teat program which io 
arranged aa a m.ue. The only pouible exit fr0111 
thia ma~e ia via a further capability which ia 
creatf:d bit by bit aa the machine proceeds through 
a aeries of teata. These teats are designed to 
completely check the hardware and the 'read only' 
blockD (programs an~ data) associated with the 
recovery program. If an error io detected at 
any stage then another fault interrupt is forced. 
Thi• causes the proceaaor to reattempt the capabili­
ty load from the next available atore module (aee 
Fig. 7). 

Fig. 7 
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This mechanism provides a dual function. 
Firat it ensures that a faulty processor is 
constrained to endlessly cycle through the 
storage system in an attempt to find a test 
program which it can obey successfully. The 
only capabilitiec available to the faulty 
machine at this time are associated with the teat 
program, so that it is unable to interfere in any 
way with the operation of the on-line system, 
Secondly it allows fault-free processo13to search 
through the storage system to find an uncorrupted 
version of the recovery programs, 

The mechanism described above, although 
considerably better than the 'copy per processor' 
method, does have some disadvantages. The first 
is that before any recovery action can be taken 
the processor involved must obey a lengthy (1')1'!-
200 msec) test program. The second is that all 
the recovery progra.~s must be replicated, Both 

·of these precautions are unnecessary in some fault 
situations where the fault is unlikely to disable 
the on-line system in any way, and the recovery 
action is fairly simple. For example, software 
faults which corrupt data within application 

programs are u~likely to affect the normal running 
of other programs. Once the fault condition is 
detected it is only necessary to activate the data 
recovery/restart routines for the particular 
application to recover system operation, 

This rather minor kind of fault can be dealt 
with quite adequately by programs which exist in th1 
on-line system and run in the normal way. However 
these programs do need some form of protect:i.on so 
that if they themselves are disabled by the fault, 
or are unable to cope with the fault situation in 
some other way, then the more powerful, replicated 
programs can be activated, Thus s01?1e form of 
monitor mechanism which can detect the failure 
of these unreplicated programs is required, as 
abown in Fig, 8, 

r--♦-- MONITOR t----r---------. 
I 
I 
I 
I 
I 
I 

UNRU•I..ICA~D 
MCOVIAY 
,-OGIIAMS 

Fig, 8 
Securit S stem usi a combination of re licated 
& unreplicate recovery programs 

In the proposed implementation of System 250 
fhe monitoring mechanism is made an implicit 
part of the unreplicated recovery programs. 
These recovery programs are activated by a 
process called the 'System Monitor'. This 
process runs at regular intervals and scans ~h~ 
system fault indicators. I! any fault condit~on 
is detected then the appropriate recovery routine 
is activAted. If persistent or multiple error 
conditions are detected then this implies that 
the fault is beyond the scope of the simple, 
unprotected, recovery programs, which are only 
intended to cope with relatively minor faults. 
In these cases System Monitor will force a fault 
interrupt, thus activating the second line of . 
defence, the replicated recovery programs. This 
is illustrated in Fig. 9. 

Of course it is important to protect.the 
system against the ~ossibili~y of the failure o~ 
this monitoring action. This can only happen in 
one of three ways:-

(1) the monitor can fail 'sane', detect that 
all is not well and force a fault interrupt. 

(2) the monitor can fail 'dead', so that 
either it does not run at all, or d~es not 
perform any meaningful action when it does run. 
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(3} the monitor can fail 'crazy' so that it app­
arently runs correctly at regular intervals and 
yet does not respond to fault conditions. 
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If the monitor fails 'sane' then the 
replicated recovery system is activated 
explicity by the monitor• and it can take 
effective action to recovery system operation. 
If the monitor fails 'dead' then an independent 
time-out mechanism is used to force a fault 
interrupt. This is equivalent to a periodic 
'OK' signal which is used to reset a time-out, 
thus indicating that the system is operating 
correctly. 

There remains the possibility that the 
monotor can fail 'crazy'. The probability of 
this happening can be reduced to any arbitrary 
level by incorporating sufficient self-checks 
into System Monitor, and ensuring that 
sufficient overlapping, independent software 
checks exist in the on-line system. 

In general it is relatively easy to ensure 
that if the system fails then eventually. some­
~here, one of the processors will generate a 
fault interrupt, thus activiatin~ the replicated 
recovery programs. 

There is one final modification which can 
usefully be made to the system illustrated in 
Fig. 9. It is fairly easy to ensure that 
even under the worst possible fault conditions 
at least one processor will generate a fault 
interrupt at some stage. Therefore the fault 
interrupt mechanism is used to ensure that the 
replicated recovery programs. and the associated 
powerful recovery actions. are activated when a 
major system collapse does occur. However, an 
isolated fault interrupt is symptomatic of 
nothing worse than a transient hardware 
fault, or simple software error. Ideally 
these should be dealt with by the unprotected 
programs, using recovery actions which cause 
minimum disruption to system operation. 

Only repetitive or multiple fault interrupts 
should drive the system into the rather more drastic 
recovery measures adopted within the replicated 
recovery programs. 

Thi, feature can be incorporated fairly eaoily. 
After a proceaaoT has successfully completed the 
test program which forms the first part of the 
replicated programs, it places a message in a 
location which is scanned at regular intervals by 
System Monitor. When this meua6e is detected• 
the other error indications are checked together 
with a fault count for the processor which gener­
ated the message. Provided that this is an 
isolated occurrence the monitor proce1s pas1es 
capabilities to the faulted proesaor which allows 
it to rejoin the on-line system. If thil particular 
processor ha, 1uffered a aucceaaion of fault in­
terrupts it is aasumed that it either ba1 an inter­
mittent fault. or a solid fault which is not 
detected by the test program. In either ca1e it 
is not passed the capabilities which allow it to 
rejoin the on-line system but ia forced back into 
the teat program. 

If System Monitor does not respond to the 
message then the assumption is made that either 
System Monitor has faile~ or that multiple error 
conditions have occurred. In this ca1e the 
processor acces1es the replicated recovery 
programs (Fig. 10). 
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Detailed Structure of System 250 Security System 

Thus the general scheme is that in addition 
to the replicated programs which provide the basic 
level of recovery another group of programs is 
provided which run in the normal way as part of 
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the basic supervisor. These progrmns form the 
first line of defence and provide a number of 
simple recovery actions which do not grea~ly . 
disturb system operation. The general hierarchical 
structure shown in Fig. 3 is therefore extended by 
splitting the basic recovery system into t~-o sections 
(Secondary Recovery and Initial Recovery). Only 
the essential kernal of this recovery system 
(Secondary Recovery) is replicated, and ~he rest 
(Initial Recovery) forms part of the basic 
supervisor (Fig. 11). 
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. So far we have discussed the sequence of 
actions to be taken under fault conditions, and 
the overall structure of the basic recovery 
system. Fig. 12 illustrates how these ~wo are 
combined. Briefly, Initial Recovery which 
receives the initial error indications, is used 
to implement all the recovery actions which do 
not in~olve a complete system restart. The 
replicated programs of Secondary_Recove:y are 
used to provide the recovery actions which 
involve a complete system test and general 
restart. 

To illustrate how this system reacts to the 
various kinds of failure which can occur it is 
useful to consider some specific examples. 

First consider a software fault in one of the 
application areas. Typically, this type of 
fault causes programs to behave unpredictably when 
presented with certain, rather rare, combinat~ons 
of data or timing circumstances. The error is 
detected either by the software checks within the 
application itself, or by hardware che~k circuits 
whe·:i the program involved attempts an illegal 
operation, such as writing into a read-only block. 

If the error is detected by software then the 
response of the basic recovery sys~em is.to force 
a restart of the failed area. This action 
reconstructs data held in store and restarts 
processing new transactions, which is generally 
sufficient to clear the fault. 

If the error is detected by hardware then, 
· after various hardware test procedures, the 
particular transaction involved is restarted. 
This may be sufficient to clear the fault, but 
if it is not then subsequent faults will force 
an area restart. 

In very rare circUIDstances the area restart 
may fail to clear the fault. This can only 
happen if the duplicate information held on 
backing store, which is used to reconstruct 
essential read write data, has been consistently 
corrupted in such a way as to cause further 
failures when it is used .as part of the restart 
procedure. This type of fault is cleared by a 
subsequent recovery action in the sequence which 
involves a complete system reload, thus clearing 
any read/write data which has been generated by 
previous system operations. 

Software faults in the operating system area, 
the basic supervisor for example, are dealt with 
in a similar way. However in this case the 
initial response to the error is more severe since 
an area restart involving any of the levels in 
the operating system will also imply a restart 
of all the application areas, rather than just 
the single application area involved as in the 
previous example. 

Transient faults in p~ocesso:rs or store modules 
have the effect or corrupting data, without 
permanently disabling a hardware unit, so that the 
immediate after-effects are indistinguishable from 
software faults. Thus the rem~ks made above also 
apply to this type of failure mode, 

Consider the possibility of a processor fault. 
Recent trials on the system indicate that faulty 
processors usually take a fault interrupt very 
q~ickly after the incidence of a fault, within one 
or two milliseconds. Also recent tests have shown 
that the 'fault capture' level of the test program, 
which is obeyed by a ~rocessor after taiing a 
fault interrupt, is very good, better than 99.5%. 
Thus the vast majority of processor faults will 
very quickly cause the faulty Machine to take a 
fault interrupt. It is then trapped in the maze 
of the test program, which isolates it from the 
rest of the on-line system. 

In general store faults will have an obvious 
a11d immediate effect on the system. Usually all 
the processors receive a parity fault indication 
very soon after the fault has occurred. This 
effectively disables tlie on-line system so that 
recovery is achieved through Secondary Recovery via 
a general test of the system and a complete warm 
start. 

Hardware faults which are not located by the 
test routines, either because they are inter­
mittent or beause the tes1: routines are not com­
prehensive enough, are difficult to recover. 
They may be located by means of fault counts, or 
in the case of intermittent faults by repetitive 
use of the hardware test programs. However if 
none of these mechanisms do locate the fault then 
th~ final, last ditch, action taken by the recovery 
system is to attempt to find a viable configuration 
by means of trial recongiguration. How quickly 
this is achieved depends on the nature of the fault. 
If the fault is seriously affecting system op­
eration, so that its effects can be detected very• 
earily, then a medium sized system can work through 
all possible combinations of the central control 



equipment in something like two minutes. If Acknowledgement 
the fault only causes the failure of the 
occasional transaction then the system is 
performing useful work. Provided the reduced 
performance is acceptable then the automatic 
recovery m-echanisms will not be activated at aJ.t, 
since the system is, to all intents and purposes, 
operating satisfactorily. This type of non­
urgent fault will eventually be cleared by the 
maintenance engineers, who receive information 
regarding all error indications recorded. 

I would like to thank the many colleagues on 
whose work this paper is based and the 
Directors of the Plessey Company for permission 
to publish it, 
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Summary 

Current plans for the introduction of 
computer controlled telephone exchanges to 
Great Britain envisage the formation of a new 
telephone network which will interwork with the 
current network and ultimately replace it, The 
basic module of the new network is a Switching 
Unit, which is controlled by a Processing 
Utility. Switching Units are composed of a 
number of subsystems, and each subsystem is 
subject to standard definition& both for its 
interfaces and for the function it performs. 
The hardware/software ratio of each subsy~tem 
is at the discretion·of the manufacturer, but 
subsystems can be regarded conceptually as hav­
ing a hardware component and a software control 
component. The action of the subsystem control 
programs is coordinated by a further control 
program, and a great amount of interaction is 
necessary between these progr6Ills during the 
setting up of a telephone call. The software 
mechanisms necessary for internal message hand­
ling and process creation must be chosen with 
great care bearing in mind the various trade­
offs possible, processor utilization, and the 
definitions of the subsystem standard interfaces. 

Introduction 

Development of the British Telephone Net­
work is guided largely by the Advisory Group 
on System Definition (AGSD) - a body consisting 
of representatives from both the Administration 
(British Post Office) and from the various manu­
facturers of telephone equipment. Any future 
computer controlled telephone exchange which is 
to be used in the United Kingdom will be subject 
to constraints laid down by AGSD. 

The concept currently proposed by AGSD is 
to form an "over.lay" network of Stored Program 
Control (SPC) exchanges. By this is meant a 
system which could start off life in a very small 
way - possibly a single exchange - interworking 
with the existing telephone network, and which· 
could then grow in discrete stages. This would 
form a new, small network of SPC exchanges, 
which interfaced with the old network at selected 
points. As the new overlay network grows, it 
will slowly replace parts of the old, until 
eventually the entire system will consist only of 
SPC exchanges. 

System Structure 

Switching Units 

The basic module of this new network is 
known as a Switching Unit. Switching units are 
of several different types, and each type can have 
many different designs and constituent elements. 
Basically, the function of each switching unit is 
to provide facilities whereby various telephone 
circuits can be monitored and interconnected un­
der the instructions of a centralized control. 
This control may be located with the switching 
unit, but equally may be remote and operate via a 
data link. The centralized control is known as 
a Processing Utility. The two most co11D11on types 
of switchin~ unit are:-

1. Subscriber Switching Unit 
The Subscriber Switching Unit interfaces directly 
with the telephone user, by means of wires fro■ 
the subscriber's premises. Fig. 1 indicates 
schematically a subscriber switching unit, which, 
with its interface to the existing network, could 
provide the start of the new network. 

SUBSCRIBER 

SWITCl11NG 

UNIT 

EXISTING 
TRUNKS 

Fig. 1 

PROCESSING 
UTILITY 

TYPICAL INTERCONNECTION OF SWITCHING UNITS 

2. Main Switching Unit 
The Hain Switching Unit is normally connected 
to a number of subscriber switching units, and 
also may be connected to other main switching 
units. This is indicated schematically in 
Fig, 2, 

Although figures 1 and 2 show the switching 
units as connected by a single data link to a 
single processing utility, more complex arrange­
ments will apply in practice, for security 
reasons. 
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Subsystems 

Each of these switching units is composed 
of a number of distinct elements,known as sub­
systems. Subsystem units are so chosen to 
provide interfaces which can be rigidly defined, 
and remain constant between equipment manu­
facturers, enabling equipments of various 
deE;igns to interwork satisfactorily. Each sub­
system performs a distinct function within its 
interface boundaries; it is the declared inten­
tion of AGSD to define these functions and 
interfaces. Some typical functions which can 
readily form subsystems, however, are:-

1. Subscribers Subsystem 
This subsystem provides the complete interface 
between a particular group of subscribers and 
the rest of the network. It provides all system 
co11D11unication with the subscriber - for example 
it will provide dial tone and busy tone to the 
subscriber, and will accept dialled or keyed 
digits from him. The subsystem also performs 
some switching and concentration of subscribers 
lines. 

2. Transit Subsystem 
This subsystem provides a switching facility, 
and thus permits different subsystems to be 
interconnected and cross connected as desired. 

3. Interface Subsystem 
This subsystem is used to connect the new net­
work with the old. It must provide all types 
of signalling and all facilities in use on the 
particular existing junctions with which it is 
connected. 

4. Manual Board Subsystem 
This subsystem provides the second "human" inter­
face into the system (the first being the subscrib­
er). The subsystem must provide all facilities 
necessary for operational staff to provide 
assistance to subscribers, monitor and test lines 
etc. 

5. Miscellaneous Terminations Subsystem 
This subsystem contains the various devices re­
quired by the administration - such as time 
announcement machines, message recorders, facili­
ties for interconnecting multi-subscriber calls. 

The configuration of Fig. 2 is redrawn in 
Fig. 3 to show some subsystems which could typi­
cally be involved, and the ways in which they 
could interface with each other. 
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Subsystem Structure 

Subsystems are chosen to perform particular 
functions within defined interfaces; the manner 
in which the functions are performed will depend 
upon the method of implementation chosen by the 
particular manufacturer. This detailed implemen­
tation can vary greatly - not only between manu­
facturers, but within manufacturers as technolo­
gies advance. In particular, the amount of work 
performed by the hardware and the amount performed 
by the software can vary. For example, consider 
'the hardware/software trade-offs which are possi­
ble in the design of the switchblock part of a 
subsystem:-

The basic requirement is to connect one 
particular input from a group of inputs, to a 
particular output. Fig. 4 shows a group of 12 
inputs and 6 outputs, and a possible method of 
performing the connections by two stages of 
switching - each point marked X represents a 
switch or "crosspoint". It can be seen that by 
judicious operation of two crosspoints, any input 
can be connected by one of several paths to any 
output - provided that the paths are not already 
in use for another connection. Several methods 
of arranging this connection are possible: for 
example:-

1. Use of "intelligent" hardware, which would 
accept the identities of the two terminals to be 
connected, effect the connection if possible, and 
then return a "success" or "fail" message. This 
solution requires a minimum of software. 

2. Use of simple hardware, which would merely 
activate or deactivate any nominated crosspoint, 
as instructed. This solution requires all the 
work to ~e done by the software - even to the 
extent of keeping a "map" of the crosspoints, in 
which busy ones are marked, and from which an 
available path can be selected, details of which 
are sent to the hardware. 

3, Use of hardware falling between these extremes 
for example hardware which would activate and 
de-~ctivate nominated crosspoints, check and 
report upon the success of the operation, and 
also provide facilities for the software to 
interrogate the state of nominated crosspoints. 
This solution leaves the "intelligence" with the 
software, but provides security for the current 
details of crosspoint settings. 

4. Use of solution 2. or 3. above, but placing 
the necessary software in a local mini or micro 
processor, which acts upon instructions received 
from the processing utility. 
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TYPICAL 2-STAGE SWITCHING 

Since it is possible for any subsystem to 
contain software, it is logical to consider each 
subsystem as consisting of two interdependent 
parts - the hardware, and the software within 
the processing utility. Any program structure, 
therefore, will conceptually contain a number of 
distinct subsystem control programs, but in the 
limit of complex hardware or local mini-processor 
implementation, the control programs will be 
simple message handlers. 

These subsystem control programs must be 
able to transmit and receive messages to and from 
their hardware counterparts. The physica.l means 
of this message transmission may include a data 
link, and most probably will include methods of 
multiplexing and de-multiplexing along some 
message transmission medium - for example the 
normal 1/0 handling software of the virtual 
machine in the processing utility could inter­
leave messages for different subsystems alor.g a 
single highway. The content of these messages 
is private between the hardware and software 
parts of the subsystem (though the format may be 
affected by the communications mediun1); the 
transmission means should ideally be transparent. 
The interposition of additional hardware and 
software between the subsystem hardware and its 
control program in order to resolve message 
addressing and transmission problems in no way 
·,iolates the concept -of the subsystem with def­
~ned interfaces; it merely provides a trans­
parent interconnection. Figure 5 shows schem­
atically the type of arrangement that could 
exist for the system depicted in Figure 3. 
Each hardware subsystem has its software counter-

. part in the processing utility. The points marked 
X indicate interfaces which are likely to be def­
ined as AGSD standard interfaces - these are 
interfaces at the software end of the subsystems; 
other interfaces subject to definition lie at the 
hardware end at the human interfaces. 
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Fig. 5 TYPICAL INTERCONNECTION OF HARDWARE AND SOFTWARE SUBSYSTEMS 

In practice the arrangement will probably 
differ from that shown in Figure 5. Frequently 
a single manufacturer will be responsible for a 
complete switching unit - if not for several co­
located switching units. Two or more similar 
hardware subsystems could be controlled by a 
single control program, orerating upon several 
data bases. Also, economics could dictate that 
certain pieces of equipment be shared by several 
subsystems. The hardware part of each subsystem 
consists of several devices, which are each treatL 
ed as peripheral units. One of these equipments 
for example, which is often expensive, is called 
a Marker. The marker is the peripheral which 
controls the operation of ~rosspoints in the 

svitchblock, as explained previously. A marker 
~,y well have the capacity to control more than 
ot\e switchblock, so its costs could- be shared 
a1UOng subsystems located together. Figure 6 
indicates a possible method of re-structuring 
the software configuration of Figure 5. The 
handling programs for the individual peripherals 
(such as the marker) are shown, and these 
programs communicate with the subsystem control 
program proper, which must co-ordinate the ope.ra­
tion of the peripherals in its subsystem hardware. 
Only one subscriber subsystem control program is 
shown - this will handle all three subsystems from 
three separa-te data bases; similarly for the other 
subsystems. 
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A software structure i1 now starting to 
emerge. A number of software "modules" have 
been identified, aud some have software inter­
faces which are the subject of future definitions 
The word module is used in the sense of a self­
contained piece of software, which could be writ­
ten and tested in isolation. As yet, no means 
of co-ordinating the operation of these modules 
has been mentioned; it is here that the concept 
of a Control Area is introduced. A Control Area 
consists of a group of switching units which are 
controlled by the same processing utility, and 
within which it is possible to select overall the 
path that will be used by a particular call, before 
that path is set up. In Figure 6, a software 
module called Area Control has been introduced, 
and this co-ordinates the operation of the in­
dividual subsystem control programs. The area 
control program can be regarded as holding the 
intelligence for the call, and the subsystems 
execute specific commands given by area control. 

Internal Communication 

Consider the type of interaction that will 
be necessary between the software modules of 
Figure 6 - for example when a subscriber in sub­
scriber subsystem 1 wishes to make a call to a 
subscriber in subscriber subsystem 3 (Figure 3). 
The first indication that a call is to be made 
is given by the subscriber lifting off his hand­
set; this event is detected by a peripheral called 
a Subscribers Line Circuit within the subscribers 
subsystem. The event will pass via the I/0 mess­
age handler, peripheral handler and subsystem 
control program to the area control program which 
must examine its records to determine the type 
of service permitted to the particular subscriber. 
If dialling out is permitted, the subscriber sub­
system will be instructed to connect -the approp­
riate type of digit receiver, in anticipation of 
keyed or dialled digits, to connect any super­
visory circuits that may be required, and to 
connect dial tone to the line. As digits are 
received, they pass via the chain to the area 
control program until eventually sufficient digits 
have been received to determine the destination 
of the call. After checking the availability and 
status of the called subscriber, instructions must 
be provided to the appropriate subsystems at the 
appr6priate times to provide ringing current to 
the called subscriber, ring tone to the calling 
subscriber, to remove these conditions, to set up 
a path via the two transit subsystems, to check 
upon the continuity of the path - and eventually 
to clear down all connections. Should the dest­
ination lie in a different control area, messages 
must be sent either directly to the destination 
control area or to some intermediate (transit) 
control area which must itself activate appropriate 
subsys~ems. 

It can be seen then, that within the software 
structure which has now emerged, there is a great 
requirement for the passing of messages between 
individual modules. Careful study must be given 
during system design to the mechanisms that will 

be involved in mea1age handlin,, and the closely 
allied topic of process creation. It is a~aumed 
that all modules are written in a re-entrant 
manner, so that conceptually one or 1118.ny pro­
cesses using a particular module may be in 
existence siaultaneoualy. The term "process" 
is here used in the dynamic sense, to mean the 
serial execution of the code in a module or 
program. A process may be associated with a 
particular module, or it may be associated with 
a message, for.example, and cross module boun­
daries. 

Figure 6 shows that each module contains a 
discrete number of "message porto" or, in other 
worlis, has a number of interfaces across each 
of which particular types of message could be 
expected. An extremely simple mechanism could 
be to place at each such input port a message 
queue. This queue is loaded by the output port, 
which generates the message, calling upon a 
common, centralized queue loading mechanism. 
The call to the queue loader specities the DUii! 

of the wanted queue, and the loader locates the 
queue by using a close association with the 
space allocation mechanism, (Absolute addresses 
could not be used, because in a system of this. 
nature with a requirement of many years mean time 
between failures, it is necessary to move prog­
rams and data around, when system components 
either fail or are released for scheduled 
maintenance). Once one of these modules is 
scheduled, it runs until all its queues have 
been emptied, at which point it terminates. The 
time scheduling algorithm can be constructed to 
any arbitrary degree of complexity. This system 
has several attractions - the time and apace 
overheads involved are quite small, and there is 
no danger of messages getting out of sequence and 
"jumping their queues". Also no contentions 
arise for file access; since only one process 
exists on any particular module at any instant 
access to that module's in-core- data bases need 
not be-subject to any lock and key control. 

This system, however, could become quite 
inefficient as traffic grew. The number of 
processes is equal to the number of software 
modules - but it is quite probable that the 
processing utility consists of a number of • 
processors working in parallel in a load-s~aring 
manner. The precise number of processors 1a of 
no interest to the applications programs, provided 
that collectively the processors provide suffic­
ient processing power; the supervision and co­
ordination of the individual processors can be 

. f h II • l ~. II regarded as a function o t e virtua mac,11ne 
The net result, however, is that several processes 
may be able to run concurrently, The system of 
one process per module forces all telephone calls 
to queue for sequential service by the area con­
trol program, whereas logically there is no 
reason why separate calls should not be processed 
in parallel by use of several processes on 
several processors - thus removing what co~ld 
become a serious bottleneck on processor time 
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utilization as traffic iocreased. 

Such considerations lead to the proposal of 
creating a separate· process for each telephone 
call. As this process completes execution of one 
module, it transfers control to the next module 
required by the particular call, Data associated 
with a particular call is carried in the "process 
base", or workspace associated with the process, 
and this reduces the overhead of message passing 
between processes. A number of difficblties are 
found with this approach, however. All messages 
entering the system require a certain amo\.ll\t of 
processing before thay can be associated with a 
particular call, and it is only when a message has 
travelled a certain distance that it can be picked 
up by its parent process - and this distance will 
depend upon the poict at which the parent process 
last suspended; Parallel processing of certain 
activities associated with a call is not;. possible 
for exll!llple, in the' subscriber call described 
previously, the parallel actions by the two sub­
scriber subsystems of setting up ring tone and 
ring current would need to be carried out se­
quentially (although of course each subsystem 
could be simultaneously active upon different 
calls). Even more serious difficulties are en­
countered when a call requires to be handled by 
a second (or third) control area - it is not feas­
ible for the process to cross control area boun­
daries. This approach also entails a process 
crossing a subsystem "standard interface" which 
ideally should be defined in terms of messages 
only. 

Yet another possibili•ty is to use a process 
per module per telephone call. This approach 
requires a message passing mechanism which can 
deal with a high message rate, and which can 
associate messages wuth processes. The combina­
tion suggests a centralized system which uses 
semaphores for communication, and which is 
intimately associated with the time scheduler. 
The system must also allow infoTU1ation to be 
passed with each semaphore, Such a general 
mechanism is currently being implemented by one 
telephone manufacturer; it is conceptually sim­
ple, and flexible in application, permitting 
easy system expansion. 

The mechanism readily provides association 
of messages with processes, and provides for re­
activation of suspended processes. Great care must 
be exercised in its use, however, because of the 
apace and time overheads inherent in.such an 
approach. Even though it provides a useful mech­
anism for the process per module per telephone 
call. Some problems still remain with this 
approach - such as the file locking problem men-

•tioned previously. For example, in a subsystem 
which contains a switchblock,Alnd which maintains 
a store image of that switchblock, each call 
which uses the image to select a path will re­
quire unique access to the image for duration of 
the path choice algorithm; some method of constrain, 
is necessary if a process per module per telephone 
call approach is used • 

Obviously, none of these aystema repreaenta 
black or white; all are shades of grey. An 
attractive compromise is to treat different typea 
of mod~le in different ways. The I/O meauage 
handler iw really a function of the processing 
utility, but can be considered here as being in 
two parts; input, ana output, The input part ia 
a single process. which is scheduled at regular 
intervals, and once scheduled runs cyclically 
until all incoming messages have been handled. 
As each mei:sage arrives, the addresses and other 
information from the Data Transfer Utility will 
identify the device from which the message orig­
inated, and the message is then passed to the 
appropriate peripheral hn.~dler (by the semaphore 
mechanism), where a process is activated for the 
particular message. The output part is also a 
single process, which is activated whenever a mess­
age.is sent to it via a semaphore, from any peri­
pheral handler program; having dealt with the 
message, the process suspends itself awaiting the 
next metisage. 

1be peripheral handler processes, in the case 
of input, will "funnel" down to a single procesa, 
which runs the subsystem control program. This 
funnelling can be achieved by private queues, in 
the case of unshared peripherals, or by use of the 
semaphore mechanism for peripheral handlers shared 
between subsystems. The single subsystem process 
can now service its messages in cyclic fashion, 
and has no contention problems for its files. 
In the case of subsystem control programs con­
trolling several different subsystems, each on 
its own database, there is one process per data­
base. 

At control area level, yet another arrangement 
applies. COlllllunication with the subsystem control 
programs is handled by the semaphore mechanism, 
thus maintaining a message interface. Each instruc­
tion given to the subsystem is accompanied by a 
"tag" which uniquely identifies the particular 
call (for example a call number) and this tag is 
later returned by the subsystem when reporting 
upon the action performed. Within the area con­
trol program, a process is initiated which handles 
the originating part of all calls. When the 
initial message comes from the subscribers sub­
system indicating that the handset has been 
lifted, this Originating Call Process allocates~ 
the unique tag to the call and handles the 
early parts of call set up. This single process 
limits itself to handling a fixed number of calla 
the nu:nber is dependent upon the structure of the 
processing utiiity; once the number is exceeded, 
a further parallel process is created to handle 
subsequent calls (thus ensuring equitable use of 
processing resources). Once sufficient is known 
about the destination of the call, a second pro­
cess is created, This process may be in the 
same control area or a different control area, 
depending upon the destination of the call -
creation of the second process, however, ensures 
that all calls ea.~ be treated in standard manner, 
whether they be inter or intra control area, .The 
second process may be a Terminating Call Process, 



but the originating and terminating call processes 
can be separated by one or more Transit Call Pro­
cesses• if the call ne·eds to pass through several 
control areas. Each such process runs in a cyclic 
manner, and will itself create further processes 
as the traffic load increases. All these processes 
existing in the area control program colll!llunicate 
with the subsystems by the semaphore mechanism. 

Conclusions 

This approach is by no means the only possible, 
but it does illustrate the type of mechanisms 
which are necessary for the organizing of inter­
communication between various parts residing in­
side an SPC computer system. Most of the work 
currently being performed in this area is subject 
to change, since the definition of the interfaces 
is not yet available. As detailed implementation 
of SPC progresses, however, manufacturers are 
solving problem~ in increasing detail, thus per­
mitting interface and functional definitions 
to be arrived at which are both efficient and 
enduring. 
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